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Abstract

Background: In the United States, asthma is the most common chronic disease of childhood across all
socioeconomic classes and is the most frequent cause of hospitalization among children. Asthma exacerbations
have been associated with exposure to residential indoor environmental stressors such as allergens and air
pollutants as well as numerous additional factors. Simulation modeling is a valuable tool that can be used to
evaluate interventions for complex multifactorial diseases such as asthma but in spite of its flexibility and
applicability, modeling applications in either environmental exposures or asthma have been limited to date.

Methods: We designed a discrete event simulation model to study the effect of environmental factors on asthma
exacerbations in school-age children living in low-income multi-family housing. Model outcomes include asthma
symptoms, medication use, hospitalizations, and emergency room visits. Environmental factors were linked to
percent predicted forced expiratory volume in 1 second (FEV1%), which in turn was linked to risk equations for
each outcome. Exposures affecting FEV1% included indoor and outdoor sources of NO2 and PM2.5, cockroach
allergen, and dampness as a proxy for mold.

Results: Model design parameters and equations are described in detail. We evaluated the model by simulating
50,000 children over 10 years and showed that pollutant concentrations and health outcome rates are comparable
to values reported in the literature. In an application example, we simulated what would happen if the kitchen and
bathroom exhaust fans were improved for the entire cohort, and showed reductions in pollutant concentrations
and healthcare utilization rates.

Conclusions: We describe the design and evaluation of a discrete event simulation model of pediatric asthma for
children living in low-income multi-family housing. Our model simulates the effect of environmental factors
(combustion pollutants and allergens), medication compliance, seasonality, and medical history on asthma
outcomes (symptom-days, medication use, hospitalizations, and emergency room visits). The model can be used to
evaluate building interventions and green building construction practices on pollutant concentrations, energy
savings, and asthma healthcare utilization costs, and demonstrates the value of a simulation approach for studying
complex diseases such as asthma.
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Background
In the US, asthma is among the most common chronic dis-
eases of childhood across all socioeconomic classes and is
the most frequent cause of hospitalization among children
after birth [1]. Higher asthma prevalence has been docu-
mented in low-income inner-city children in many cities
[2-5]. A number of studies have documented relationships
between asthma exacerbation and exposure to indoor en-
vironmental stressors found in residential settings, such as
allergens (e.g., dust mites, cockroach allergens), air pollu-
tants (e.g., ozone (O3), nitrogen dioxide (NO2), fine particu-
late matter (PM2.5)), and environmental tobacco smoke
(ETS) [6,7]. Asthma exacerbations and related events are
clearly influenced by numerous additional factors, including
but not limited to access to health care, medication compli-
ance, and rhinovirus and other infectious agents [8-10].
Because of the multi-factorial nature of asthma exacerba-

tions, it can be challenging to design optimal intervention
strategies. Studies have demonstrated public health benefits
of residential interventions such as using community health
workers to provide asthma education [11,12], conducting
integrated pest management [13,14], or multi-factorial in-
door interventions [15]. It is difficult to make generalized
conclusions about intervention efficacy, because of sig-
nificant differences in context and risk factors for vari-
ous populations, as well as the possibility that intensive
interventions using community health workers have sig-
nificant social support components that provide benefits
beyond improvements in the physical environment [16].
A recent systematic review by the Centers for Disease
Control and Prevention (CDC) found that multi-trigger,
multi-component, home based environmental interven-
tions for children were effective at improving asthma
quality of life and productivity, but did not specify
which components were essential elements [17].
Indoor environmental interventions are also prone to

complex tradeoffs among pollutants, as interventions
that influence ventilation can have opposing effects on
indoor and outdoor sources, and interventions that ad-
dress pests can lead to increased pesticide exposures if
not designed and implemented appropriately [18]. For
example, higher NO2 concentrations tend to be mea-
sured indoors in homes with gas stoves [19,20], indicat-
ing that improved venting of gas stoves or increased
ventilation in general will reduce NO2 concentrations.
However, increasing general ventilation increases indoor
NO2 concentrations from outdoor sources, particularly
in urban settings with high traffic.
Simulation modeling can be a valuable tool for evaluating

intervention strategies across a range of outcomes, espe-
cially in the presence of significant tradeoffs. In this context,
simulation modeling refers to a systems science approach
involving modeling of a complex system that evolves over
time given changes in state variables that occur at defined
points in time [21]. Such models have been used for a num-
ber of health policy analyses such as evaluating alternative
interventions for schizophrenia [22], malaria [23] diabetes
[24], and breast cancer [25,26]. In spite of the flexibility of a
simulation modeling approach and its applicability to a
multi-exposure setting for a complex multi-factorial disease
such as asthma, modeling applications in either environ-
mental exposures or asthma have been limited to date.
Prior modeling work in asthma has been limited to

Markov state-transition models. These models have
focused on either the adult population or interventions
involving medication adherence alone [27-29]. While
these studies provided valuable insight about medication
cost-effectiveness, Markov state-transition models are
limited given their inability to track individuals, take
account of multiple individual attributes, and capture
interactions and non-linear effects. By definition, Markov
models are memory-less, and the probability of transition-
ing between states does not depend on prior history within
the simulation [30]. In contrast, asthma has been character-
ized as a classic example of a dynamic and non-linear dis-
ease with numerous influential factors [31], for which
alternative modeling approaches may be more informative.
In this article, we provide the conceptual design and

parameterization for a discrete event simulation model
of pediatric asthma, focusing on the efficacy of indoor
environmental interventions in low-income multi-family
dwellings. These residences are characterized by having
smaller living spaces and high occupant density, as well
as an increased prevalence of peeling paint, indoor water
leaks, and structural deficiencies that provide points of
entry for cockroaches and other pests [18]. The model
begins with a baseline population of high-risk children –
characterized by demographic, residential, and behav-
ioral factors. For each household, we modeled indoor
environmental concentrations of multiple contaminants
for fifty thousand simulated households across a variety
of conditions. Based on literature syntheses, these con-
centrations are used to predict the percent predicted
forced expiratory volume in one second (FEV1%), which
in turn determines the probability of asthma exacerba-
tions and health care utilization. To establish model
credibility, we compared outputs with the published lit-
erature. As model evaluation is an iterative process, we
will continue this as new data come to light. Finally, we
conduct a simulation experiment with a simple hypo-
thetical intervention to illustrate the insights available
through this model approach, and discuss the strengths
and weaknesses of our model structure.

Methods
Overview
We designed the discrete event simulation to model
children’s exposure over time to environmental factors
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and their risk of having an asthma event on a daily basis.
We modeled health outcomes by first estimating chil-
dren’s exposure to indoor combustion pollutants, aller-
gens, and other risk factors and using these factors to
predict daily changes in lung function (FEV1%), as done
elsewhere in the context of policy models for asthma
medication [27-29]. Children were assigned a baseline
FEV1% which was affected by daily random variation as
well as external conditions including pollutant exposures.
The daily risk of asthma outcomes (symptoms, oral ster-
oid use, emergency room (ER) visits, hospitalizations) was
calculated based on changes in FEV1% (Figure 1). The
model parameters, described and justified in detail below,
are summarized in Additional file 1.
The model, built in R (R 2.12.1, The R foundation of

Statistical Computing), generates an ensemble or cohort
of children and their associated households that have
characteristics typical of Boston public housing. We used
the stream package for random number generation. We
used the Scientific Computer Facilities at Boston University
to simulate fifty thousand children individually over 10
years, or until they turned 18 years of age. Individual
results were aggregated to obtain results for the cohort.

Study population and housing characteristics
The target simulated population was children living in low-
income multi-family housing consistent with public hous-
ing residents, a population with high asthma prevalence
and severity [32-34] – a community survey in two Boston
Housing Authority developments found pediatric asthma
prevalence of 22% [35], compared to 8.5% in the general
population [36]. Inputs describing demographic and hous-
ing characteristics were drawn from studies in Boston
Figure 1 Schematic of discrete event simulation model showing an a
[76], and relationships between model inputs.
public housing and similar settings and are presented in
Table 1. In the case of age, gender, apartment level, and
type of smoker (light versus heavy), values were uniformly
distributed across the simulated population. The remaining
characteristics obtained from studies in Boston public
housing were either derived from a community-based sur-
vey administered to 53 households in one development
[32], or from an asthma intervention study enrolling 78
children from 61 households in 3 developments [34]. We
simulated fifty thousand children to ensure an ability to de-
tect changes in relatively infrequent asthma events (like
hospitalizations) associated with changes in a single
environmental risk factor.
While we lacked sufficient symptom and severity data to

apply the National Heart, Blood and Lung Institute
(NHLBI) classification guidelines for managing asthma
[8], we wanted to characterize asthma severity to deter-
mine the medications that each child would typically be
prescribed. We therefore used the FEV1% cutoffs that cor-
respond with severity classification for persistent asth-
matics (> 80% for mild, 60-80% for moderate, and < 60%
for severe), and used these to determine the prescribed
medications. Intermittent asthmatics were excluded from
the simulation because of the limited environmental lit-
erature on intermittent asthmatics – inclusion criteria for
most epidemiology and environmental studies require
having persistent asthma. Because of our focus on persist-
ent asthmatics above the age of 5, many of whom are
likely sensitized to one or more allergens, we assumed that
asthma remained throughout childhood (i.e., no remis-
sion). Time-varying characteristics included age, indoor
and outdoor NO2 and PM2.5, outdoor temperature, indoor
and outdoor relative humidity (RH), cockroach allergen,
partment within a multi-family building from CONTAM software



Table 1 Baseline occupant and household characteristics
of a simulated population of low-income asthmatic
children

Occupant characteristics Simulated population values

Gender 50% male

Age 6-17, uniformly distributed

Race [34] 49% White

25% African American

15% Latino

11% Asian

Own a gas stove[102] 89%

Use the stove for supplemental
heating in winter [32]

38%, assuming that supplemental
heat was turned on only on days
when the 24-hour average outdoor
temperature was below 32°F

Below average housekeeping
(vs. average or above average
housekeeping) a[39]

25%

Current smoker in the house[33] 34%

Among smokers, % heavy vs.
light smoker b

50%

Housing characteristics

Apartment level (upper 4th

floor/lower 1st floor)
50%

Leakiness category c I 20%

[19] II 50%

III 30%

Functioning kitchen and
bathroom fan [102]

13%

Houses with holes in walls/ceiling
[39]

73%

a Housekeeping = degree of cleanliness and clutter in the apartment, based on
visual inspection.
b Heavy smoker smoked one pack per day, light smoker smoked a ½ pack per
day.
c Leaky categories based on wall infiltration rate, where category I, II, and III
had infiltration values of 0.0177, 0.053, and 0.0722 in2/ft2 respectively.
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mold exposure (defined by “damp” housing), daily random
variation in baseline FEV1%, and changes in FEV1% due
to all risk factors.

Lung function (FEV1% predicted)
Lung function was modeled using forced expiratory vol-
ume at 1 second expiration (FEV1), a measure that is
obtained by spirometry. FEV1 is generally thought to re-
flect airway obstruction, as observed in asthma and
chronic obstructive pulmonary disease (COPD). The
values of FEV1 are generally translated into a percentage
of predicted FEV1 based on age, race, and gender
(FEV1%), and are thought to be normal if ranging from
80 to 120% of predicted, given variations in effort by the
patient or administration of the test itself. There is suffi-
cient evidence of the relationship between FEV1% and
both environmental exposures and asthma outcomes,
and FEV1% is a key predictor of asthma morbidity
within evidence-based national guidelines for asthma
care [8]. Further, this metric has previously been used in
simulation modeling analyses of asthma interventions
[27-29]. Other measures of lung function, including the
ratio of FEV1 to forced vital capacity (FVC), peak expira-
tory flow (PEF), and forced expiratory flow from the 25th

percentile to the 75th percentile of FVC (FEF25-75%), ei-
ther had an insufficient literature examining the rela-
tionship with key environmental exposures and/or were
not robust measures of asthma severity. Although some
investigators have shown weak correlations between
FEV1% and asthma events [37,38], we considered it to
be the most robust and interpretable predictor available.
The distribution of baseline FEV1% was derived using

spirometry data for children with persistent asthma who
participated in the Healthy Public Housing Initiative (HPHI),
an intervention study focused on pediatric asthmatics living
in multi-family public housing developments in Boston
[13,14,19,39]. For FEV1% measurements taken prior to
HPHI environmental interventions, mean baseline FEV1%
was 88.4% (SD=11.6%). However, this distribution reflects
the likely cumulative effect of several environmental
and socioeconomic factors present within the HPHI
cohort, including indoor environmental influences.
Thus, if we assumed that this distribution corresponded
with a ‘no-exposure’ scenario and subsequently observed
further reductions in FEV1% given the simulated expo-
sures in our study, we would be systematically biased in
our characterization of asthma severity. To address this
issue, we reset the mean baseline value but kept the rela-
tive FEV1% distribution. We first ran our simulation
model with the HPHI FEV1% distribution and determined
the mean decrease in FEV1% attributable to all environ-
mental exposures in comparison with a no-exposure sce-
nario (decrease = 19.8%). We then approximated the no-
exposure scenario by increasing all baseline FEV1% values
by 19.8%, with a maximum allowed FEV1% of 120% to
avoid findings which might be inconsistent with normal
pulmonary function test results. We subsequently simu-
late the influence of multiple environmental exposures
and medication use on FEV1% and evaluate the resulting
distribution, as described in more detail below.
To characterize day-to-day variation in FEV1% within

individuals, we constructed a distribution of daily vari-
ability using data collected from the HPHI study. We
averaged the variability of individual repeated spirometry
measures for 49 children pre-intervention over multiple
testing sessions in the year, with each session including
at least one week of twice-daily spirometry. A total of
110 testing sessions were recorded, with an average of
10 spirometry measurements included per child per test-
ing session, and each pre-intervention spirometry session
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including at least one week of twice-daily spirometry. The
mean variation between measurements within sessions
was 10%, which includes random variation and variation
due to environmental effects. Our objective is to include
only random variation, and there are no formal analytical
approaches available to determine how much of the 10%
was random versus due to environmental effects. For the
simulation, we assumed daily random variation of 5%, half
of that observed in HPHI. Thus, daily FEV1% was
assigned by drawing a value from a normal distribution,
with a mean value of the baseline FEV1%, and a standard
deviation of 5%.
Long term decline in FEV1% was determined based on

coefficients presented by O’Byrne et al. (Table 2, [40]),
where children began the simulation with a typical yearly
decline in FEV1% (−0.8% for 5–10 year olds and 0% for
11–17 year olds). These values were relevant to both
those who took corticosteroids and those who did not.
In theory, all persistent asthmatics should be prescribed
corticosteroids or other controller medications accord-
ing to NHLBI clinical guidelines, but studies have found
gaps related to health care access, compliance, miscom-
munication between providers and patients, misunder-
standing of asthma as a chronic vs. acute disease, and
other factors. For our study, we therefore use outputs
from O’Byrne et al. to represent asthmatics with appro-
priately prescribed medications (termed “compliant”)
and those without (termed “non-compliant”). Long term
decline coefficients were modified by the occurrence of
a severe asthma-related event (SARE), based on the def-
inition of SARE and coefficients presented by O’Byrne
et al. (Table 2, [40]). In our simulation a SARE was
defined as a hospitalization or ER visit. In 5–10 year
olds, when a SARE occurred, lung function decreased by
−2.1%/year in non-compliant children and remained at
−0.8%/year in compliant children. In 11–17 year olds,
when a SARE occurred, lung function decreased by
−1%/year in non-compliant children and −0.3%/year in
compliant children. These yearly rates were converted to
Table 2 Asthma medication prescription and usage as a
function of FEV1%, based on NHLBI guidelines given
asthma severity classification [8]

FEV1% Prescription Usage

>80% Albuterol Take on days with
asthma symptoms

One controller medicine Daily

60-80% Albuterol Take on days with
asthma symptoms

Two controller medicines Daily

<60% Albuterol Take on days with
asthma symptoms

Three controller medicines Daily
daily rates and applied to the daily FEV1% on the day
after the SARE occurred. Children were allowed to re-
turn to pre-SARE FEV1% decline rates if they remained
SARE-free for 3 years, the time period used in the O’Byrne
study.
Following this approach, mean FEV1% at the end of a

10-year simulation for 50,000 asthmatic children was
84.9% (SD= 11.4%, range: 51-118%), indicating that we
have reasonably represented the underlying distribution
of spirometry values from HPHI, with deviations related
to modeled variability in exposures not explicitly consid-
ered in the original distribution.

Asthma medication and compliance
Medication usage is both a key outcome variable influ-
enced by the frequency of asthma events and a potential
modifier of the effect of environmental exposures on
health outcomes. The probability of a child having a pre-
scription for controller medications was determined
from HPHI data. A prior publication [41] gave the per-
centage of children in each severity category (mild, moder-
ate, or severe persistent) who reported being prescribed at
least one controller medication. However, as our model
does not have sufficient information to formally classify
severity, we reanalyzed raw data from HPHI to estimate
the relationship between FEV1% and the probability of
being prescribed a controller medication. We used SAS
(Proc Logit, version 9.1, SAS Institute Inc., Cary, NC) to
calculate the odds of being prescribed asthma medication,
and converted the odds ratio to a probability estimate.
The resulting probability equation was:

Pmed ¼ exp 2:228� 2:854 � FEV1%ð Þ
1þ exp 2:228� 2:854 � FEV1%ð Þ ;

where Pmed is the probability of being prescribed and
reporting taking a controller medication, and FEV1% is
the baseline lung function value. Of note, we are inter-
ested in both children who are not prescribed controller
medications and those who are prescribed the medications
but are non-adherent. Lacking data to quantify each of
these components, we assume that the self-report from
HPHI represents a combination of the two. Therefore, if
the caregiver reported that a child was prescribed and was
taking a controller medication, it was assumed the child
was “compliant” with the medications and its protective
effects. A child who should have, but was not prescribed a
controller, was “non-compliant” according to clinical
guidelines. This may have resulted in overestimating the
use of controller medication, given the literature docu-
menting failure to adhere to medication use even with a
prescription [42], but reliable compliance data were not
available from the HPHI study population and literature
values would not be well aligned with the available data.
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Children were evaluated at the end of each simulated
year to determine changes in their asthma medication pre-
scription, approximating adjustments that would happen
during a yearly physical exam. At every year anniversary
we compared each child’s average FEV1% during the past
year to his or her FEV1% at the beginning of the year. Al-
though severity classification and changes in medication
are based on many components beyond FEV1%, we sim-
plified this step by using the standard ranges of FEV1%
associated with each severity classification [8], and chan-
ging their asthma medication prescription accordingly
(Table 2).

Linking indoor pollutant exposures and FEV1%
The model includes four contaminants that can poten-
tially affect a child’s lung function and asthma status. We
modeled two combustion pollutants – NO2 from gas
stoves or outdoors, and PM2.5 from cooking, smoking, or
outdoors – and two allergens (cockroach and dampness
as a proxy for mold). Other common pollutants associated
with asthma exacerbations such as ozone, mouse, cat, dog,
and dust mite allergen were not included because we ei-
ther lacked a critical mass of literature linking the expos-
ure with FEV1%, or an ability to readily model indoor
concentrations.
For each of the contaminants included in the study, we

conducted a systematic literature review using PubMed.
We initially utilized broad search criteria described below,
and subsequently reviewed each article for its interpret-
ability and applicability to our discrete event simulation
model. For example, for NO2 and PM2.5, studies needed
to utilize exposure metrics that could be constructed from
our indoor air quality modeling (described below), and
needed to include asthmatic children who were reasonably
representative of our simulated population. For cockroach
allergens, articles were included if they measured allergen
levels in the household dust of study participants, given
the difficulty in linking physical environmental measure-
ments to measures such as IgE expression. For studies of
mold and/or moisture, articles were included if they
included exposure characterization that would be feasible
within our exposure modeling, which focused on mois-
ture/mold characterization given RH outputs.
For PM2.5 and NO2, we conducted a joint literature re-

view given a desire to avoid double-counting of effects
(i.e., with single-pollutant models not controlling for
other pollutants). PubMed search terms included [“lung
function” AND(PM2.5 OR particulate matter OR nitro-
gen dioxide OR NO2) AND(asthma OR children)],
[("childhood asthma" OR “pediatric asthma”) AND("par-
ticulate matter" OR “nitrogen dioxide”)], and [asthma
AND("particulate matter" or “nitrogen dioxide”) AND
FEV]. These searches collectively yielded 413 publications,
though with multiple duplicates.
Of these publications, 17 were sufficiently relevant to
our study to merit more in-depth evaluation [43-59].
Studies were excluded for a variety of reasons, including
a lack of focus on short-term changes in lung function due
to short-term changes in air pollution. We eliminated 12 of
these studies given issues such as the use of FEV1 rather
than FEV1% as the outcome measure without sufficient
data to allow for conversion [45,46,50,53-55,57-59], season-
specific characterization [56], or missing quantification of
values necessary for our study [47,51]. For the remaining
five studies, two [43,44] were panel studies in Los Angeles,
two [49,60] were studies of the same panel of children
in Windsor, Ontario, and one [52] was based on
children within the Inner City Asthma Study. We
did not formally pool these available estimates be-
cause of the small number of applicable independent
studies, as well as the significant heterogeneity in ex-
posure metrics and statistical approaches. Instead,
we chose the one study by O’Connor et al. [52] that
provided multi-pollutant estimates among the full
study population of children with exposure metrics
that were available from our indoor air quality simula-
tions. To ensure that this choice of study did not sig-
nificantly bias our model, we conducted inverse-variance
weighted pooling of the other four studies using the most
comparable estimates available, and compared the results
to those derived strictly from O’Connor et al. In spite of
some limitations in the four studies and key differences in
methods and assumptions, the pooled concentration-
response unction was reasonably similar to the values
from O’Connor et al. (20% higher for PM2.5 and 34%
lower for NO2), providing reassurance that our choice was
reasonable.
More specifically, we used coefficients reported in

Table III of O’Connor et al. to estimate the effect of
NO2 and PM2.5 on FEV1%. They reported a change in
FEV1% at the 90th percentile of NO2 and PM2.5 concen-
tration relative to the 10th percentile for exposure to a 5-
day average outdoor pollutant concentration, adjusted
for site, month, site-by-month interaction, temperature,
intervention group and multiple pollutants (PM2.5, NO2,
and O3). We converted the coefficients to a percent
change in FEV1% per unit increase in pollutant, and
divided by an infiltration factor to convert outdoor con-
centrations to equivalent indoor pollutant concentra-
tions. This method was applied elsewhere to align
epidemiologic effect estimates based on outdoor mea-
surements with an indoor exposure model [61]. The in-
filtration factor for NO2 was 0.58 (average of factors
reported by [20,62-64]), and 0.72 for PM2.5 (average of
factors reported by [64-66]). Coefficients were a −0.093%
(SE = 0.030) change in FEV1% per 1 ppb increase in
NO2, and −0.077% (SE = 0.032) change in FEV1% per 1
μg/m3 increase in PM2.5.
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For cockroach allergen exposure, we found 36 results
using the PubMed search term [“pediatric asthma AND
cockroach”] and 75 results using the search term [“child-
hood asthma AND cockroach”], but none of these articles
met our inclusion criteria. Examination of other articles
known to the authors did not provide adequate informa-
tion for our application, largely due to a lack of quantita-
tive exposure measures in residential dust, which would
be necessary to model the marginal benefits of interven-
tion strategies. One option was to use studies of IgE ex-
pression in children [67]. However, this would require us
to dynamically model the association between allergen
concentrations in dust and serum IgE, which would be
quite complex and uncertain. The other option was to use
studies that used a more relevant exposure metric but fo-
cused on adults. We opted for the latter approach, and
selected an individual study with all relevant attributes but
conducted in adults (asthmatics and non-asthmatics).
In this study, Weiss et al. found that log-transformed

dust concentrations of Bla g 1 and Bla g 2 were both signifi-
cantly associated with longitudinal FEV1 decline (ΔFEV1),
with multiple linear regression coefficients of −194.14
mL/year and −94.83 mL/year respectively, after adjust-
ing for age, initial FEV1, ever smoking, and Der p 1,
Der f 1, and Fel d 1 allergen concentrations [68]. The
study did not report functions for asthmatics only, so
we used values for the entire population, noting that
the relationship between dust concentrations and FEV1
was not appreciably different for the non-asthmatic popu-
lation than the population as a whole. We converted
change in FEV1 (ΔFEV1) to change in FEV1% by dividing
ΔFEV1 by FEV1 predicted, where FEV1 predicted was cal-
culated using the NHANES equation below [69], using
the average age and height reported in Table 1 of the
Weiss study.

FEV1predicted ¼ 0:554� 0:013 � Age� 0:0002 � Age2
� 0:0001 �Height2;

where age = 57.5 years, and height = 174.42 cm [68]. This
conversion would ideally be based on individual height
and age, but lacking this information, using the average
values provides a reasonable approximation given the rela-
tively narrow age and height ranges within the study
(57.50 +/− 2.58 and 174.42 +/− 2.33, respectively). The
resulting yearly decreases in FEV1% per unit increase
in log transformed allergen concentration (log10 U/g)
were −0.055% (SE=0.013) and −0.027% (SE=0.007) for
Bla g 1 and Bla g 2, respectively.
Articles on mold and moisture were found in PubMed

using the phrases [“childhood asthma AND mold”],
[“childhood asthma AND moisture”], [“pediatric asthma
AND mold”], and [“pediatric asthma AND moisture”],
with 88, 13, 44, and 1 articles found, respectively. Five
articles [70-74] matched the inclusion criteria, but only
two measured our lung function of interest, FEV1, and only
one paper was a study of asthmatics [73]. If a house was
characterized as damp, we used the coefficient reported in
this paper to reduce FEV1% by 10.6% (SE=4.95, 95% CI:
1.0 – 20.3). The coefficient reported in this paper was
adjusted for unemployment, household income (above/
below £200), respondent smoker, other smoker in house,
and pet ownership.

Indoor pollutant exposure
For NO2 and PM2.5, daily 24-hour average exposures
were estimated with regression models developed using
the multi-zone simulation software output from CON-
TAM2.4c (NIST, Gaithersburg, MD, http://www.bfrl.nist.
gov/IAQanalysis), an approach described in more detail
elsewhere [75]. Briefly, within CONTAM, we selected
the building most typical of Boston public housing and
other low-income multi-family dwellings in Boston –a
building 4 stories, 1940–1969 construction, and natur-
ally ventilated [76]. A family of 2 adults and 2 children
were simulated living in each 703 square foot apartment,
which included a bedroom, bathroom, living room, and
kitchen (Figure 1). Sources of NO2 included the gas
stove used for cooking, the gas oven used for supple-
mental heat in the winter, and outdoors. Sources of
PM2.5 included environmental tobacco smoke, cooking,
and outdoors.
Because CONTAM could not be directly linked with

the discrete event simulation model across all 50,000
children on an hourly basis for 10 years, we instead con-
structed regression models to explain variability in
CONTAM outputs from a series of runs across key factors
known to influence indoor concentrations. Regression
predictors for pollutant/source combinations included
terms consistent with a one-compartment box model for
indoor concentrations, building characteristics (floor level,
air exchange rate), occupant behaviors (kitchen and bath-
room exhaust fan usage), and meteorological conditions
(season, outdoor RH). Regression models had good pre-
dictive power (R2 from 0.89 to 0.98 across models) and
physical interpretability, and outputs corresponded well
with literature values [75]. Based on these equations, the
24-hour concentration was updated daily in the simula-
tion model. See Additional file 1 for equations.
Regression models for RH were calculated in a similar

way using CONTAM outputs, and were used to deter-
mine the likelihood of mold growth and dampness,
described below. Indoor sources of RH included occu-
pant behaviors such as breathing, showering, cooking,
and dishwashing. Our models indicated a strong effect
of season, air exchange rate, and outdoor RH and
temperature [75]. We constructed exposure measures to
be homologous with epidemiological evidence linking

http://www.bfrl.nist.gov/IAQanalysis
http://www.bfrl.nist.gov/IAQanalysis


Table 3 Description of mold index developed to describe
mold growth in wood [77]

Mold index (M) Mold growth description

0 No growth

1 Some growth detected only with microscopy

2 Moderate growth detected with microscopy
(coverage more than 10%)

3 Some growth detected visually

4 Visually detected coverage more than 10%

5 Visually detected coverage more than 50%

6 Visually detected coverage 100%
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dampness/mold with FEV1%, described above. Mold
growth was calculated using a set of differential equations
developed to model mold growth on wooden material
[77] which estimate a daily mold index (M) (Table 3). The
index is a function of critical RH necessary for mold
growth, temperature, surface quality, time, current RH,
wood species, and some constant coefficients. Research
suggests that models for pine sapwood most closely ap-
proximate materials with high nutrient content, as is the
case with modern building materials [78], thus we applied
the pine sapwood parameters to model mold growth in
our buildings.
All homes were assigned a mold index value of 0 at

the beginning of the simulation. Each day a change in
mold index (dM/dt) was calculated based on the para-
meters described, where if a critical RH was reached, the
index would increase, and if the RH was below a critical
value, the index would decrease. Once level 2 was
reached, a house was categorized as “damp”, and had an
effect on FEV1% as described above. This effect was re-
versible, that is, if the index dropped below 2 on subse-
quent days, the “damp” classification was eliminated, as
was the effect on FEV1%. If level 4 was reached, then
the house was permanently classified as “damp”, that is,
even if the index dropped below 2, the house retained its
“damp” value and effect on FEV1%. See Additional file 1
for equations.
For cockroach allergen, simulations of daily concentra-

tions were infeasible, as models such as CONTAM are
not applicable. Instead, distributions for Bla g 1 and Bla
g 2 were calculated from HPHI data, where Peters et al.
measured cockroach allergen in air, dust in bedrooms
and dust in kitchens [39]. As the Weiss et al. epidemio-
logical study used to derive the concentration-response
function chose the highest concentration among kitchen,
living room, and bedroom as their exposure metric, we
utilized the kitchen measurements from Peters et al.
2007, which were consistently highest in HPHI. Peters
presented multivariate models where cockroach allergen
concentrations depended on having holes in walls and
ceilings, and the degree of cleanliness and clutter in the
apartment, termed housekeeping practices. We derived
three distributions of cockroach allergen from the HPHI
data, where homes were categorized as: 1.“with holes
and below average housekeeping”, 2.“with holes and
average or above average housekeeping”, and 3.“without
holes and average or above average housekeeping”. Holes
were defined as “open cracks or holes thicker than a
dime found in the inside walls or ceilings”. Bla g 1 geo-
metric mean concentrations were 143.5 (GSD= 3.6), 42.7
(GSD= 6.2), and 8.2 (GSD= 14.6) U/g, for each category
respectively, and Bla g 2 geometric mean concentrations
were 691.4 (GSD= 8.6), 117.3 (GSD=9.0), and 21.9
(GSD= 12.5) U/g, respectively. Because the concentra-
tions were skewed, daily cockroach allergen concentra-
tions were drawn from the log transformed data,
truncated at one SD.
Daily NO2, PM2.5, and cockroach allergen were multi-

plied by a factor of 0.7 to account for the time children
spent inside their homes. The 0.7 factor was calculated
using data in Table 15–3 of the EPA Exposure Factors
Handbook [79], which lists average times spent on in-
door and outdoor activities for children 6 to 8 years old.
Indoor activities included sleeping, personal care, house-
hold work, eating, studying, playing, TV, and reading.
We calculated the average time spent indoors, weighted
for weekend and weekday differences. For the remaining
time, we assumed that outdoor NO2 and PM2.5 reason-
ably represented exposures (lacking data on other micro-
environments) and that there were no cockroach allergen
exposures.

Outcomes: asthma exacerbations and health care
utilization
Asthma outcomes were computed daily for each child
based on changes in FEV1% associated with environ-
mental exposures, derived from a prior model of the as-
sociation between FEV1% and asthma symptoms or
serious asthma events reported by Fuhlbrigge et al. [80].
The Fuhlbrigge study reported on 407 mild to moderate
asthmatic children enrolled in the placebo branch of the
Childhood Asthma Management Program (CAMP), aged
5–12 years, and recruited from 8 centers around the US
[81]. In that asthma study, serious asthma event referred
to ER visits, hospitalizations and oral steroid bursts, which
were evaluated separately from asthma symptoms. We
developed functions to approximate continuous associa-
tions between FEV1% and both asthma symptoms and
serious asthma events, given only categorical models in the
original publication, and we utilize other data streams to
determine all outcomes of interest (which were not inde-
pendently reported in the original publication).
First, the frequency of asthma symptoms was character-

ized in Fuhlbrigge et al. (listed in that article’s Figure 1),
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which shows the number of episode-free days per 4-
month period across four categories of FEV1% (<60%, 60-
79%, 80-99%, ≥ 100%). An episode-free day was defined as
“a day with an asthma diary asthma score of 0, and no re-
port of night awakening, morning and evening peak
flow >80% personal best, no albuterol use for symptoms
or prednisone use, absence from school as a result of
asthma, or physician contact as a result of asthma”. We
focused on the number of days with symptoms to be bet-
ter aligned with our model structure. To convert this into
a continuous function of FEV1%, we used the estimated
midpoint of each FEV1% (50%, 70%, 90%, and 110%) cat-
egory and fit the following polynomial expression:

Psymptom-day ¼ 2:95 FEV1%3 � 6:93FEV1%2

þ 4:68 FEV1%� 0:27

where Psymptom_day is the daily probability of having a day
with asthma symptoms as defined above. While the poly-
nomial expression is clearly over determined given four
categories of FEV1%, the intent was not to build a predict-
ive model or a model for out-of-sample characterization,
but simply to capture previously observed trends. The
equation is valid for values of FEV1% between 0.5 and 1.2,
a range of values consistent with our simulated study
population.
A similar process was used to fit an equation predict-

ing “serious asthma events”, defined in Fuhlbrigge et al.
as oral steroid use, hospitalization, or emergency room
visit. Table 3 of Fuhlbrigge et al. provides a multivariate
regression model including the influence of FEV1%
(again in four categories) as well as night awakenings
and previous hospitalizations. To convert the reported
odds ratios into a probability of a serious asthma event
based on a continuous FEV1% scale, we first determined
the baseline rate of serious asthma events and converted
it to a probability of a serious asthma event. Fuhlbrigge
et al. reported that their study population had a baseline
rate of 0.26 serious asthma events per 4 month period,
or approximately 0.0022 events per day (probability of
0.0022). Distributing this rate on a population-weighted
basis following odds ratios and population numbers in
Table 1 of Fuhlbrigge et al. yields daily event probabil-
ities of 0.0068, 0.0032, 0.0022, and 0.0017 in the four
FEV1% categories of decreasing severity. Fitting a poly-
nomial expression to these values leads to a resulting
equation of:

Pserious event ¼ �0:045FEV1%3 þ 0:1277FEV1%2

� 0:1224FEV1%þ 0:0417

Where Pserious event is the daily probability of having a
serious asthma event. As previously, the equation is valid
for values of FEV1% between 0.5 and 1.2. Pserious event
was multiplied by a season factor which accounted for re-
sidual variation due to seasonally dependent variables such
as respiratory virus infections and outdoor allergen concen-
trations [9,82-85]. The season factors were 1.11, 0.60, 1.23,
and 1.05 for spring, summer, fall, and winter respectively,
and were estimated from monthly ER utilization raw data
collected in the Quality Improvement study between 2006
and 2008, using Boston Medical Center Health Net Plan
(BMCHP) data [86]. Similar trends were observed in a
23-year survey of asthma hospitalizations in Canada
(Figure 1A,[87]).
Based on data published in the Fuhlbrigge study, if a

child had a hospitalization due to asthma in the previous
12 months , their probability of having a serious asthma
event increased (Table 3, [80]). We calculated this multi-
plicative factor following the same process described
above, with the resulting polynomial equation:

Ohospit ¼ �45:7FEV1%3 þ 129:7FEV1%2

� 124:4FEV1%þ 42:4

where Ohospit is the increased odds of having a serious
asthma event given an asthma hospitalization in the last
12 months, and was equal to 1 if no hospitalization had
occurred.
While the Pserious event equation provides a robust ex-

pression for serious asthma events, data are not provided
in Fuhlbrigge et al. to determine the relative distribution
among these events, a critical component for policy ana-
lysis. To approximate this distribution, we used asthma
statistics reported by the Centers for Disease Control and
Prevention. We assumed that these average hospitalization
and ER visit rates apply to the population from the Fuhl-
brigge study, and that the odds ratios from Table 3 apply
to each individual serious asthma related event, allowing
us to create distributions of hospitalization rates and
emergency room visits proportional to those calculated
above for asthma events. The remaining events are pre-
sumed to be oral steroid bursts.
For hospitalization, we estimated a baseline hospitalization

rate due to asthma of 0.023 hospitalizations per year per
asthmatic child, combining the National Hospital Dis-
charge Survey [88] which reports an asthma pediatric
hospitalization discharge rate of 24.8 per year per 10,000
children under 15 years of age and the National Health
Interview Survey [89] which reports that 10.7% of children
between 5 and 11 years have asthma. This was similar to
the approach used by the US Environmental Protection
Agency to characterize baseline asthma hospitalization
rates for regulatory analyses [90]. For this model we used
more recent data.
We constructed a polynomial equation to predict the

daily probability of hospitalization based on FEV1%



Fabian et al. Environmental Health 2012, 11:66 Page 10 of 15
http://www.ehjournal.net/content/11/1/66
using the approach described above, with the resulting
equation:

Phosp ¼ �0:0013 FEV1%3 þ 0:0037 FEV1%2

� 0:0036 FEV1%þ 0:0012

where Phosp includes direct hospitalizations and trans-
fers from the ER to the hospital.
For ER visits, we used an estimated emergency depart-

ment visit rate of 0.1 per year per asthmatic [91] to build
a similar equation, where the daily probability of going
to the ER is:

PER ¼ �0:0057 FEV1%3 þ 0:0162 FEV1%2

� 0:0155 FEV1%þ 0:0053

Because 8% of ER visits result in hospitalization and are
already accounted for in Phosp, we multiplied PER by 0.92
so as not to overestimate ER visits [92].
Oral steroid bursts were estimated by subtracting Phosp

and PER from Pserious event.

Results
Model outcomes and evaluation
Using the population baseline characteristics we simu-
lated 50,000 children over 10 years. Average yearly
health outcomes stratified by FEV1% are presented in
Table 4. As expected, children with lower lung function
had a higher incidence of days with asthma episodes and
severe asthma events. Average health outcome rates
across the total simulated population align closely with
our baseline model inputs drawn from the literature:
0.023 hospitalizations/year [88,89], 0.1 ER visits/year
[91], 0.78 serious events/year [80]. The percentage of
days with asthma symptoms per year was 41%, averaged
across all simulated children. At the end of the simula-
tion, 67% of the children had FEV1%> 80%, 32% had
FEV1% between 60% and 80%, and 1% had FEV1% <
60%. This distribution is consistent with what has been
observed in the field [93].
As a measure of disease progression, we found that

13.2% of children dropped to a more severe asthma clas-
sification over the 10 year simulation, solely based on a
comparison of average FEV1% over the previous year to
Table 4 Healthcare outcomes from a baseline simulation of 5

Asthma events pe

FEV1% category Days with asthma symptoms
(SDa)

Serious asthma
events (SD)

> 80% 141 (11.1) 0.79 (0.80)

60%-80% 165 (10.4) 1.2 (0.8)

< 60% 183 (4.4) 2.3 (1.2)

Across all
categories

149 (165) 0.94 (0.85)

a SD= standard deviation.
FEV1% asthma severity classification guidelines. This
change in severity classification would then simulate the
changes in asthma medication prescription that might
occur at a yearly physical checkup. Because available evi-
dence indicates a declining or unchanging lung function
for asthmatic children over time, all else being equal,
children would not move to a less severe classification
within our simulation. Average FEV1% decline for com-
pliant (assigned to get a controller medication) versus
non-compliant (not assigned to get a controller medica-
tion) children was 0.18% and 0.37% respectively. Of the
children who were non-compliant, 15% dropped to a
more severe asthma classification over the 10 year simu-
lation, compared to 12.5% of the compliant children.
For indoor pollutants, 24 hour average indoor NO2

was normally distributed with a mean concentration of
54 ppb (SD= 23 ppb, range 3–140 ppb). In the literature,
reported values from field studies in Boston public hous-
ing include 43 ppb (SD= 20 ppb) measured in the kit-
chen, and 36 ppb (SD= 17 ppb) measured in the living
room [19]. Another study measured an average of 19.6
ppb (SD= 11.0 ppb, range 5.7-61 ppb) [64]. The concen-
trations we simulated were above those reported in field
studies, likely because of the high percentage of simu-
lated homes with gas stoves and non-operational kitchen
exhaust fans. All homes in the highest NO2 quartile
(mean = 80 ppb) had gas stoves, 99.95% had non-
operating kitchen exhaust fans, and 42% had low air ex-
change rates (i.e. leaky category 1, as defined in Table 1).
In contrast, in the lowest NO2 quartile (mean = 22 ppb),
only 56% of homes owned a gas stove, 51% had a non-
operating fan and 16% had low air exchange rates.
Indoor PM2.5 was lognormally distributed, with a mean

of 55 μg/m3 (SD=34 μg/m3, range 14–394 μg/m3). In the
literature, the mean PM2.5 concentrations in homes where
smoking was rarely reported was 20.3 μg/m3 (SD=12.5,
range 6.77–74.9 μg/m3)[64]. This did not include ETS,
estimated to increase indoor PM2.5 concentrations
between 7 and 49 μg/m3 [65,94-97]. The PTEAM study
reported indoor PM2.5 concentrations of 48 μg/m3

averaged over 178 smoker and non-smoker homes [65]. In
the simulation, in the highest PM2.5 quartile (mean=
101 μg/m3), 82% of homes had light or heavy smokers,
0,000 asthmatic children over 10 years

r child per year

ER visits
(SD)

Hospitalizations
(SD)

Oral steroid bursts
(SD)

Number of
children

0.09 (0.24) 0.02 (0.11) 0.68 (0.76) 33,363

0.13 (0.19) 0.03 (0.09) 1.0 (0.7) 15,973

0.22 (0.21) 0.05 (0.1) 2.0 (1.1) 664

0.11 (0.23) 0.026 (0.10) 0.81 (0.79) 50,000
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94% had non-operating exhaust fans, and 44% had low air
exchange rates. In contrast, in the lowest PM2.5 quartile
(mean=25 μg/m3), only 1% of homes had smokers, 66%
had non-operating exhaust fans, and 5% had low air
exchange rates.
Cockroach allergen was distributed according to house-

keeping practices and the presence of holes in walls and
ceilings of the home. Bla g 1 and Bla g 2 median concentra-
tions were 180 U/g (range 90–402 U/g) and 1270 U/g
(range 245–2870 U/g) for below average housekeeping and
presence of holes, 66.7 U/g (range 12.9-166 U/g) and 220
U/g (range 18–476 U/g) for above average housekeeping
and presence of holes, and 20.3 U/g (range 0.8-51.8 U/g)
and 49.1 U/g (range 5.9-92.7 U/g) for above average house-
keeping and no holes. Peters et al. reported median kitchen
floor Bla g 1 concentrations of approximately 48 U/g
(Figure 1), [98]) measured in a longitudinal component of
HPHI, and median kitchen floor concentrations of 61.8 U/g
and 198 U/g for Bla g 1 and Bla g 2 in a cross-sectional
component of the same study [39]. Gergen et al. reported
geometric mean Bla g 1 values of 68.7 U/g in kitchens of
inner-city homes [99], and Arbes et al. [100] found a geo-
metric mean concentration of Bla g 1 in kitchen floors to
be 287 U/g.
Approximately 19% of homes were classified as “damp”

at the end of a 10 year simulation, comparable to preva-
lence values observed in studies of Boston public housing,
where Hynes et al. reported 20% of homes had observed
mold growth [34], and Brugge et al. reported that 43% of
residents had smelled or seen mold in their homes [32].
As shown in Figure 2, average daily pollutant exposure

decreased FEV1% by 3.4%, 4.0%, 1.9%, 8.4%, and 5.5% for
PM2.5, NO2, mold, Bla g 1 and Bla g 2 respectively, relative
to a no-exposure scenario, and are similar to the literature
values we used as inputs. Cockroach allergen had the
Figure 2 Average daily decrease in FEV1% for 50,000 simulated child
highest impact on FEV1%, followed by NO2 and PM2.5. In
the 19% of children living in a damp (i.e. moldy) home,
FEV1% decreased by 9.8%, higher than any other pollutant.

Application example, fixing exhaust fans
We conducted a simulation experiment with a simple
hypothetical intervention by simulating what would happen
if the kitchen and bathroom exhaust fans were improved
for the entire cohort. To evaluate this we set the exhaust
fans in the kitchen and bathroom to be operational for
100% of the children, versus 13% in the baseline scenario,
ran the simulation for 10 years, and compared results to
the baseline 10 year simulation. In this scenario, average
daily NO2 concentrations were reduced to 28 ppb (−48%),
and PM2.5 concentrations were reduced to 35 μg/m3

(−36%). Cockroach allergen concentrations remained the
same, and the percentage of homes classified as damp at
the end of the simulation was 18.7%, compared to 19.0% in
the baseline simulation.
In terms of health outcomes, mean daily FEV1% was

87.8% (range: 52-119%), 3% higher than the baseline sce-
nario. Only 10.8% of children dropped to a more severe
asthma category compared to 13.2% at baseline. Days
with asthma symptoms, days with serious asthma events,
ER visits, hospitalizations, and oral steroid use dropped
2%, 7.5%, 9.1%, 5.5%, and 8.0% respectively across all
asthmatics.
For validation and evaluation purposes, we compared

the magnitude of our results to relevant intervention
studies as a plausibility check for our model. Unfortu-
nately very few field studies have measured the effect of
building interventions on asthma outcomes and none
are directly comparable. Morgan et al. reported an 11-
15% reduction in ER visits after an environmental inter-
vention trial combining education with reducing allergen
ren over 10 years, relative to a no-exposure scenario.
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and ETS concentrations [15]. A research group in New
Zealand reported a 46% drop in NO2 when they replaced
a majority of unflued gas heaters with non-polluting hea-
ters, with a corresponding reduction in asthma wheezing
of 29% (non-significant) and a 45% reduction in sleep dis-
turbed by wheeze (significant)[101]. Kattan et al. published
on the Inner City Asthma study, showing that remediation
reducing allergens to which children were specifically al-
lergic (dust mites, passive smoking, cockroaches, pets, and
rodents) decreased environmental allergens, and corre-
sponded to a 19% decrease in unscheduled clinic visits.
Since none of these interventions are directly comparable
to our simulated interventions, all we can conclude is that
our numbers are plausible. Further analysis comparing
other interventions will be the subject of future applica-
tions of our simulation model. One approach we will take
to reduce uncertainties is to focus on the marginal
changes in exposures and outcomes when evaluating the
effect of building interventions, rather than focusing on
the absolute number of outcomes at baseline and post-
intervention.

Discussion
Limitations
One limitation in our set of assumptions was the
inability to model in more detail the cumulative effects
of pollutants on FEV1%. We assumed simple additivity
of effects on FEV1%, but given different mechanisms of
action, the true combined effect may be different (with
potential synergistic or antagonistic relationships).
There is insufficient evidence in the current published
literature to allow us to model these relationships. Simi-
larly, we did not have adequate information to model
the effect of non-chemical factors such as socioeco-
nomic status, stress, or race, some of which are known
to influence medication compliance or to be related to
asthma outcomes. As more data become available on
these relationships the model can be expanded and
refined.
The equations linking FEV1% to asthma events were

developed based on data from the CAMP study, which
includes children with mild to moderate asthma from 8
centers across the US [81]. Thus there are some limita-
tions in interpreting the results for the severe asthmatics
as classified in our model, as well as likely differences in
relationships between the CAMP children and our simu-
lated low-income children living in multi-family housing.
It is possible that using the CAMP data underestimates
the severity of the response compared to lower-income
populations. The same is true for our baseline estimates
of asthma outcomes, which were based on national data-
bases or the CAMP study.
The model as parameterized here is specific to multi-

family housing with resident characteristics of inner-city
Boston residents. Because the model relies heavily on
data from the HPHI project, which involved a small
number of households from a few housing developments
in Boston, the generalizability of our numerical results is
constrained to housing developments with similar con-
struction (i.e. multifamily buildings) and heating systems.
High rise buildings and buildings with different heating
systems would require separate analysis. However, we
know that this setting is relevant to many low-income
urban populations where asthma prevalence is elevated
and associated housing-related risk factors are also
common.
The asthma medication module is an oversimplified

version of what happens in the real world with respect
to asthma severity classification, asthma medication pre-
scription, and adherence. We classified asthmatics solely
based on FEV1%, for the purpose of determining medi-
cations, although severity classification is far more com-
plex [8], and medication prescription and adherence are
influenced by many factors, including asthma status, ac-
cess to health-care, income status, emotional status, and
social experience [102]. Also, the model does not incorp-
orate daily symptoms and level of asthma controls, and
how this influences medication use, or cases where
symptoms worsen over time prior to becoming a severe
attack. Future work should include developing more com-
plex models of asthma medication use which takes into
account these many factors.
Generalizability
In order to extend this framework to other settings and
populations, changes in the current model can be imple-
mented by modifying any of the parameters presented in
Table 1 and elsewhere (e.g., Additional file 1), which in-
clude resident characteristics and behavior. That said,
our findings are likely robust to a number of basic
demographic assumptions. Even the number of residents
in the unit would have a small influence on our findings
given our model structure, within a reasonable range of
values, so the quantitative conclusions readily extend to
one-adult households.
Changes in building type or building characteristics

can be implemented by selecting a different building
plan from the 209 buildings available in CONTAM [76]
and repeating the modeling process described, making
the modeling approach generalizable.
Potential applications of this model include evaluating

the effect of building construction and public housing
policy changes on pollutants and asthma, evaluating
green building practices on indoor air quality and health
of residents in remodeled homes, and conducting cost-
benefit analyses comparing energy savings to cost of
healthcare utilization.
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Conclusions
We developed a discrete event simulation model of
pediatric asthma that can be used to evaluate the effect
of building interventions on multiple air pollutants and
allergens, as well as on healthcare (asthma attacks, hospi-
talizations, ER visits) and asthma medicine utilization. This
work presents a novel framework linking environmental
exposures to FEV1% and pediatric asthma outcomes, can
be expanded to any housing type, and can be refined as
more data becomes available regarding the different rela-
tionships. The model can help determine health-optimal
strategies as buildings are renovated or constructed, and can
be used to consider a variety of environmental and non-
environmental interventions targeting pediatric asthma. The
outputs are directly relevant to policy discussions in low-
income urban communities.

Additional file

Additional file 1: Input distributions and equations for discrete
event simulation model.
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